Soil Profile Type

Type I

- 1. (Shear wave velocity greater than 2,500 ft/s) Rock, either shale-like or crystalline in nature.
- 2. Stiff clays or dense sands and gravels where the depth to bedrock is less than 200 ft.

Type II

Stiff clays or dense sands and gravels where the depth to bedrock is greater than 200 ft

Type III

30 feet or more of soft to medium stiff clays and loose to medium dense sands and gravels.

Type IV

(Shear wave velocity less than 500 ft/s) 40 feet or more of soft clays or silts

Table 5. Typical values of initial shear Modulus- Page 82-FHWA-SA-97-076

Type of Soil	Initial Shear Modulus, Gmax (tsf)
Soft Clays	28.7 – 143.6
Firm Clays	72 – 360
Silty Sands	288 –1441
Dense Sands and Gravel	721 - 3603

Firm = medium stiff

$$Gmax=240N_{60}^{0.8}$$
 (kip/ft².) Ohsaki & Iwasaki 1973 $Gmax=12{,}000N_{60}^{0.8}$ (kPa) $Gmax=\rho Vs^2$

 $Vs~(m/s~or~ft/s) = Shear~Velocity \\ \rho = soil~density~or~from~correlations~to~standard~penetration~tests.~~\rho = \gamma_t \ / \ g$

EX.
$$120lb/ft^3/32.2ft/sec^2 = 3.72 \ lb/ft^4/s^2 = \rho$$

Vs = Square Root (Gmax/ ρ),
= Square Root (28.7 tsf x 2000lb/ton / 3.72lb/ft⁴/s²
= 124 ft/sec

Type of Soil	Initial Shear Velocity, (ft/s)
Soft Clays	124 – 278
Firm(Medium Stiff) Clays	197 – 440
Silty Sands	394 – 880
Dense Sands and Gravel	622 - 1392